Hyperoxia decreases MMP-9 and increases TIMP-1 protein in the newborn rat lung: association with arrested alveolarization.

Hyperoxia decreases matrix metalloproteinase-9 and increases tissue inhibitor of matrix metalloproteinase-1 protein in the newborn rat lung: association with arrested alveolarization.

Hosford GE, Fang X, Olson DM.

Pediatr Res. 2004 Jul;56(1):26-34.


Matrix metalloproteinases (MMP) are likely effectors of normal lung development, especially branching morphogenesis, angiogenesis, and extracellular matrix degradation. Because hyperoxia exposure (>95% O(2)) from d 4 to 14 in newborn rat pups leads to arrest of alveolarization and mimics newborn chronic lung disease, we tested whether hyperoxia altered MMP-2 and -9 mRNA, protein, and enzymatic activity, and the mRNA and protein expression of the endogenous tissue inhibitor of MMP, TIMP-1. No changes due to hyperoxia exposure were observed in MMP-2 mRNA or pro-enzyme (72 kD) protein levels between d 6 and 14, although the overall protein mass and zymographic activity of the active (68 kD) enzyme were diminished (p < 0.05, ANOVA). However, hyperoxia significantly decreased levels of MMP-9 mRNA and pro-MMP-9 protein and diminished overall MMP-9 pro-enzyme activity. TIMP-1 mRNA was not elevated by hyperoxia until d 14, but protein levels were significantly (p < 0.001) elevated by hyperoxia from d 9 to 14. To estimate the potential of MMP inhibition to arrest alveolarization, administration of doxycycline (20 mg/kg, twice daily by gavage), a pan-MMP proteolysis inhibitor, arrested lung alveolarization. We conclude that hyperoxia decreases MMP-9 mRNA, protein, and activity and elevates TIMP-1 protein, and these changes have the potential to contribute to the arrest of normal lung development.

, ,

  1. Poster un commentaire

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s

%d blogueurs aiment cette page :