Outline of the Basic Genetic Algorithm

  1. [Start] Generate random population of n chromosomes (suitable solutions for the problem)

  2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population
  3. [New population] Create a new population by repeating following steps until the new population is complete
    1. [Selection] Select two parent chromosomes from a population according to their fitness (the better fitness, the bigger chance to be selected)
    2. [Crossover] With a crossover probability cross over the parents to form a new offspring (children). If no crossover was performed, offspring is an exact copy of parents.

    3. [Mutation] With a mutation probability mutate new offspring at each locus (position in chromosome).
    4. [Accepting] Place new offspring in a new population
  4. [Replace] Use new generated population for a further run of algorithm
  5. [Test] If the end condition is satisfied, stop, and return the best solution in current population
  6. [Loop] Go to [Fitness]

Primer, et un post fort intéressant de Dave Thomas, sur Panda’s Thumb : Target? TARGET? We don’t need no stinkin’ Target!.

About these ads

  1. Poster un commentaire

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s

Suivre

Recevez les nouvelles publications par mail.

Joignez-vous à 375 followers

%d bloggers like this: