Hox Genes

2C2A38D7-D6B2-42BE-97FE-8126C1ABEA3B.jpgCurrent Topics in Developmental Biology Volume 88, 2009, Pages 35-61 Hox Genes

Le volume entier est dédié aux gènes Hox, édité par Olivier Pourquié, qui en a écrit la préface (et contribue au chapitre 7, voir ci-dessous).

Attention, les doi ne sont pas encore fonctionnels, pour une liste des papiers suivez le lien donné par Tom : http://www.sciencedirect.com/science/bookseries/00702153


Chapter 2 Evolution of the Hox Gene Complex from an Evolutionary Ground State

Walter J. Gehring, Urs Kloter and Hiroshi Suga

doi:10.1016/S0070-2153(09)88002-2

In this chapter, we consider the question of how the ordered clusters of Hox genes arose during evolution. Since ordered Hox clusters are found in all major superphyla, we have to assume that the Hox clusters arose before the Cambrian “explosion” giving rise to all of these taxa. Based on his studies of the bithorax complex (BX-C) in Drosophila Lewis considered the ground state to be the mesothoracic segment (T2) since the deletion of all of the genes of the BX-C leads to a transformation of all segments from T3 to A8/9 (the last abdominal segment) into T2 segments. We define the developmental ground state genetically, by assuming that loss-of-function mutants lead to transformations toward the ground state, whereas gain-of-function mutants lead to homeotic transformations away from the ground state. By this definition, T2 also represents the developmental ground state, if one includes the anterior genes, that is, those of the Antennapedia complex. We have reconstructed the evolution of the Hox cluster on the basis of known genetic mechanisms which involve unequal crossover and lead from an urhox gene, first to an anterior and a posterior gene and subsequently to intermediate genes which are progressively inserted, between the anterior and posterior genes. These intermediate genes are recombinant due to unequal crossover, whereas the anterior and posterior genes are not affected and therefore had the longest time to diverge from the urhox gene. The molecular phylogenetic analysis strongly supports this model. We consider the ground state to be both developmental and evolutionary and to represent the prototypic body segment. It corresponds to T2 and is specified by Antennapedia or Hox6, respectively. Experiments in the mouse also suggest that the ground state is a thoracic segment. Evolution leads from the prototypic segment to segmental divergence in both the anterior and posterior direction. The most anterior head and tail segments are specified by homeobox genes localized outside of the cluster.


Chapter 7 Establishment of Hox Vertebral Identities in the Embryonic Spine Precursors

Tadahiro Iimura, Nicolas Denans and Olivier Pourquié

doi:10.1016/S0070-2153(09)88007-1

The vertebrate spine exhibits two striking characteristics. The first one is the periodic arrangement of its elements—the vertebrae—along the anteroposterior axis. This segmented organization is the result of somitogenesis, which takes place during organogenesis. The segmentation machinery involves a molecular oscillator—the segmentation clock—which delivers a periodic signal controlling somite production. During embryonic axis elongation, this signal is displaced posteriorly by a system of traveling signaling gradients—the wavefront—which depends on the Wnt, FGF, and retinoic acid pathways. The other characteristic feature of the spine is the subdivision of groups of vertebrae into anatomical domains, such as the cervical, thoracic, lumbar, sacral, and caudal regions. This axial regionalization is controlled by a set of transcription factors called Hox genes. Hox genes exhibit nested expression domains in the somites which reflect their linear arrangement along the chromosomes—a property termed colinearity. The colinear disposition of Hox genes expression domains provides a blueprint for the regionalization of the future vertebral territories of the spine. In amniotes, Hox genes are activated in the somite precursors of the epiblast in a temporal colinear sequence and they were proposed to control their progressive ingression into the nascent paraxial mesoderm. Consequently, the positioning of the expression domains of Hox genes along the anteroposterior axis is largely controlled by the timing of Hox activation during gastrulation. Positioning of the somitic Hox domains is subsequently refined through a crosstalk with the segmentation machinery in the presomitic mesoderm. In this review, we focus on our current understanding of the embryonic mechanisms that establish vertebral identities during vertebrate development.


Chapter 8 Hox, Cdx, and Anteroposterior Patterning in the Mouse Embryo

Teddy Younga and Jacqueline Deschampsa

doi:10.1016/S0070-2153(09)88008-3

Cdx and Hox gene families descend from the same ProtoHox cluster, already present in the common ancestors of bilaterians and cnidarians, and thought to act by providing anteroposterior (A-P) positional identity to axial tissues in all bilaterians. Mouse Cdx and Hox genes still exhibit common features in their early expression and function. The initiation and early shaping of Hox and Cdx transcriptional domains in mouse embryos are very similar, in keeping with their common involvement in conveying A-P information to the nascent tissues during embryonic axial elongation. Considerations of the impact on axial patterning of the early expression phase of these genes that correlates with the temporally collinear expression of 3′-5′ Hox genes suggest that it is concerned with the acquisition of A-P information by the three germ layers as the axis extends. This early A-P information acquired by all cells emerging from the primitive streak or tailbud and their neighbors in the caudal neural plate gets further modulated by the second phase of gene expression occurring later as the tissues mature and differentiate along the growing axis. We discuss the possibility that regulatory phase 1, common to all Cdx and Hox genes, is inherent to the concerted mechanism sequentially turning on 3′-5′ Hox genes at early stages, and keeping expression of the initiated genes subsequently in the new materials added posteriorly at the axis extends. The posterior Hox gene expression domain would be subsequently complemented by Hox regulatory phase 2, consisting in a variety of gene-specific, region-specific, and/or tissue-specific gene expression controls. We also touch on the unanswered question whether vertebrate Cdx gene expression delivers A-P positional information in its own right, as Caudal does in Drosophila, or whether it does so exclusively by upregulating Hox genes.

About these ads

  1. #1 par Tom Roud le août 3, 2009 - 5:31

    Je ne sais pas comment tu fais pour avoir accès à ces papiers, ce n’est pas la première fois que je clique sur les doi depuis ici et que j’ai un message d’erreur…

  2. #2 par Oldcola le août 3, 2009 - 5:40

    Vais mettre des liens directs peut-être, les doi ne semblent pas être propagés encore, ils viennent de les mettre en ligne les papiers si j’ai bien compris.

    Je t’arrange ça.

    Rien du tout, je n’ai même pas accès via les canaux officiels des cercles vertueux ! C’est un comble.

    Je laisse ici le sommaire, si je peux te dépanner n’hésites pas :

    Preface Olivier Pourquié
    Chapter 1 The Bithorax Complex of Drosophila: An Exceptional Hox Cluster Robert K. Maeda, François Karch
    Chapter 2 Evolution of the Hox Gene Complex from an Evolutionary Ground State Walter J. Gehring, Urs Kloter, Hiroshi Suga
    Chapter 3 Hox Specificity: Unique Roles for Cofactors and Collaborators Richard S. Mann, Katherine M. Lelli, Rohit Joshi
    Chapter 8 Hox Genes and Segmentation of the Vertebrate Hindbrain Stefan Tümpel, Leanne M. Wiedemann, Robb Krumlauf
    Chapter 5 Hox Genes in Neural Patterning and Circuit Formation in the Mouse Hindbrain Yuichi Narita, Filippo M. Rijli
    Chapter 6 Hox Networks and the Origins of Motor Neuron Diversity Jeremy S. Dasen, Thomas M. Jessell
    Chapter 7 Establishment of Hox Vertebral Identities in the Embryonic Spine Precursors Tadahiro Iimura, Nicolas Denans, Olivier Pourquié
    Chapter 8 Hox, Cdx, and Anteroposterior Patterning in the Mouse Embryo Teddy Young, Jacqueline Deschamps
    Chapter 9 Hox Genes and Vertebrate Axial Pattern Deneen M. Wellik

  3. #3 par Tom Roud le août 3, 2009 - 6:05

    J’ai fini par les trouver sur ScienceDirect :

    http://www.sciencedirect.com/science/bookseries/00702153

    Mais c’est dur, par exemple le numéro n’est même pas répertorié encore sur le site d’Elsevier.

  4. #4 par Oldcola le août 3, 2009 - 6:11

    Je sais, je sais, c’est ma flemme qui a créé le problème, je ne voulais pas chercher les URL :-(
    Je laisse les doi, ils vont devenir fonctionnels demain ou après-demain.

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s

Suivre

Recevez les nouvelles publications par mail.

Rejoignez 377 autres abonnés

%d blogueurs aiment cette page :